The Many Dimensions of SDR Hardware
Plotting a Course for the Hardware Behind the Software

Sept 2017
John Orlando
Epiq Solutions

GRCon 2017
Epiq Solutions in a Nutshell

• **How we help our customers**
 - Develop and deliver SDR transceiver building blocks that radically reduce our customer's SWaP and time to market
 - Develop and deliver turnkey wireless sensing solutions to provide detailed insight into wireless networks and devices operating in areas of interest
Trying to understand SDR specs is like...
Many-Dimensional Space of SDR
Many-Dimensional Space of SDR

- RF tuning range
- Sample Rate
- Sample Bit Width
- Instantaneous Bandwidth
- Physical Form Factor
- CPU Options
- FPGA Options
- External Interfaces
- Internal Interfaces
- Software APIs

GRCon 2017
Outline for Today

Five Key SDR Hardware Parameters:
1) Form Factor 4) Interface
2) RF Tuning Range 5) CPU Class
3) Data Converters

- What are the options available today?
- What you should be thinking about when developing a system?
- What is coming down the pike tomorrow?
Form Factor
Form Factor – Industry Trends

- 3U/6U VPX
- VITA 57.4 (FMC+)
- M.2 2280

GRCon 2017
RF Tuning Range

- RFIC based
 - Analog Devices AD9361: 70 MHz to 6 GHz
 - Analog Devices AD9371: 300 MHz to 6 GHz
 - Lime Micro LMS7002: 100 KHz to 3.8 GHz

- Discrete designs
 - Superheterodyne covering 2 MHz to 6 GHz

- Direct RF Sampling
 - DC to 2 GHz (with caveats)

- Block up/down converter + RFIC
 - Best of both worlds
 - 1 MHz to 6 GHz
RF Tuning Range – Industry Trends

- RFIC based
 - DC to 6-12 GHz
- What about higher?
 - 28+ GHz for 5G
 - Hybrid block up/down converter + RFIC
- What about higher-er?
 - 60 GHz to 85 GHz
 - Hybrid block up/down converter + RFIC
Data Converters

- Current RFICs have integrated data converters
 - **AD9361**: Up to 61.44 Msps, 12-bit A/D, 12-bit D/A, parallel interface
 - **LMS7002**: Up to 61.44 Msps, 12-bit A/D, 12-bit D/A, parallel interface
 - **AD9371**: Up to 122.88 Msps, 16-bit A/D, 14-bit D/A, serial interface (JESD204b)
- Discrete A/D and D/A converters
 - 16-bit for IF sampling (up to 100s of Msps)
 - 12-bit for direct RF sampling (up to 4 Gsps)
 - JESD204b most common interface these days

GRCon 2017
Data Converters – Industry Trends

- **RFICs**
 - 100s of Msps
 - Topping out at 16-bits
 - Serial interface (JESD204b)

- **Fully integrated into FPGA**
 - Xilinx RFSoC
 - FPGA fabric + multi-Gsps A/D and D/A converters in single chip
 - 2/4/8/16 channels
 - No JESD204b to worry about
 - Same challenges as any direct RF sampling solution
Interfaces

- **PCIe**
 - Fast (up to 16 Gbps per lane), low latency, scalable
 - Optimized/efficient transport
 - Typically an edge connector interface
 - Focused on generic data transport

- **Ethernet**
 - Fast (10 Gbps), medium latency, scalable
 - Bulky connectors + cables (SFP+)
 - Focused on networking use-case

- **USB 3.0/3.1**
 - Fast (5/10 Gbps), higher latency, difficult to scale
 - Typically a cable interface
 - Focused on consumer use-cases and peripherals (cameras, data storage, etc)
Interfaces – Industry Trends

• PCIe all day long
 - Gen5 hits 32 Gbps per lane (2019)
• Thunderbolt 3
 - Cabled PCIe for the masses!
 - Baked into USB-C connector
 - Up to 40 Gbps (well, 32 Gbps for PCIe...
 4 lanes x 8 Gbps)
 - Daisy-chain multiple devices with single host
• Ethernet
 - 10 GbE over RJ45
 - Laptops need to catch up
 - 40G/100G
CPU Classes

• Key architectural questions for SDR usage
 - Core CPU processing capability (SIMD options?)
 - I/O options to move data in/out of the CPU
 - Memory architecture (cache, RAM, and non-volatile)
 - Lots of others, but these are the big ones
• ARM
 - Single/dual/quad/octo core solutions
 - 1W – 10W typical power consumption
 - Ex: NXP (formerly Freescale) i.MX6 and i.MX7
 - Ex: Xilinx Zynq and Zynq Ultrascale System on Chip
• Intel x86
 - Solutions from 1 to 24 cores
 - 4W to 70W+
 - Better support for GPU usage
 - Ex: Atom “Apollo Lake” (1-4 cores) family very power efficient with familiar x86 SIMD extensions
CPU Classes – Industry Trends

• Companies continue to experiment with massive multi-core
 - Ex: Adapteva Epiphany CPU, Ceva DSP, others
 - Still no formidable traction

• Same old same old?
 - ARM and x86 will continue to lead the charge
 - 4-8 cores seems to be the sweet spot
 - AMD Ryzen Threadripper (8/12/16 core x86)
 - GPU additions continue to improve
 - Intel recently shuttered their really interesting low power integrated CPU module business (Joule, Galileo, Edison)
Summary

- SDR world offers more variables now than ever before
- Platform variables/options are numerous, making objective comparisons challenging
- This is just the tip of the iceberg, but it is a start...

- Let's look at some concrete examples
Sidekiq M.2

- **Form Factor**: Standard M.2 3042 card
- 30mm x 42mm x 4mm
- AD9361 RFIC + Xilinx Artix 7 FPGA (XC7A50T)
- **RF Tuning Range**: 70 MHz – 6 GHz
- 2x2 MIMO capable transceiver
- **Data Converters**: Between 200 Ksps and 61.44 Msps
- **Interface**: Gen2 PCIe x1 interface to host
- External PPS and reference clock input options
- Typical power consumption: 2W (application dependent)
- Supported by libsidekiq API and gr-sidekiq
Sidekiq M.2 block diagram
Sidekiq Deployment Options

- Up to 8 cards
- Up to 6 cards

GRCon 2017
Sidekiq X2

- **Form Factor:** VITA 57.1 FMC card form factor
- 84mm x 69mm x 8.5mm
- Based on Analog Devices' AD9371 RFIC
- **RF Tuning Range:** 1 MHz to 6 GHz
- Multiple RF interfaces
 - Phase coherent Rx pair (common LO)
 - Third independently tunable Rx
 - Phase coherent Tx pair
- **Data Converters:** 16-bit A/D, 14-bit D/A
- Up to 100 MHz RF bandwidth per channel
- Integrated Rx pre-select filters
- 10 MHz + PPS input on front panel
- Power consumption: 4W – 10W (application dependent)
- Supported by libsidekiq API and gr-sidekiq
Sidekiq X2 Block Diagram

- RxA1
- RxA2
- RxB1
- TxA1
- TxA2
- 10 MHz Input
- PPS Input
- Rx Filters
- 1 MHz to 300 MHz block up/down converters or passthrough
- AD9371
- Clock Gen + Sync

GRCon 2017
Sidekiq X2 Deployment Options

- **Sidekiq X2 Thunderbolt 3 Platform**
 - **Interface**: FMC PCIe carrier card with Xilinx Kintex Ultrascale KCU060 FPGA
 - 726K LEs, 2760 DSP slices, 38 Mb BRAM
 - Thunderbolt3 Chassis for PCIe carrier
 - PCIe Gen3 x4 interface to host laptop/NUC/desktop
 - PC replaces 10 GbE
 - Low latency PCIe
 - DMA directly to host system memory
 - 122.88 Msamples/sec * 4 bytes/sample * 3 Rx channels = ~1500 MB/sec (12 Gbits/sec)

- **3U VPX carrier card**
 - Xilinx Zynq Ultrascale+ ZU9EG (quad-core ARM + FPGA)
 - 600K LEs, 2520 DSP slices, 32 Mb BRAM
 - 4 GB DDR4 RAM
 - Supports conduction and convection cooled options