RadioML Redux: GTRI Efforts on the Army Signal Classification Challenge

Dr. Raj Bhattacharjea
Georgia Tech Research Institute
Electro-Optical Systems Laboratory
Background: Reconfigurability of SDR

- Protocol is reconfigurable
- Modulation is reconfigurable
- Frequency is reconfigurable
- Data rate is reconfigurable
- Encoding is reconfigurable
- ...
- How can we be understand what we need to for decision making?
ML for Reconfigurable Signals

- If it's all reconfigurable, how do we make algorithms to make sense of the spectrum?
- Learn the algorithms from data for your specific problem!
- Train in lab, perform in real world
 - Using accelerators available on the market thanks to deep learning for other applications
- Not hype; current “deep learning” is:
 - Linear algebra
 - Weak nonlinearities
 - Optimizers
- Data driven, requires good datasets
RadioML 2016.10A Dataset

- Open source dataset generation code
 - https://github.com/radioML/dataset
- Dataset license is Creative Commons Attribution - NonCommercial - ShareAlike 4.0
 - https://www.deepsig.io/datasets/
- Part of the GNURadio Extended Universe
- Labelled I/Q examples, synthetically created using GNURadio, pushed through channel models
ASCC Dataset

- Data usage under terms of an agreement
- Labelled I/Q examples
- Drawn from a larger repository
- Synthetically created, channel impairments
ASCC vs. RadioML dataset

ASCC
- 24 classes
 - BPSK, QPSK, 8PSK, 16PSK, QAM16, QAM64, 2FSK-5KHz, 2FSK-75KHz, GFSK-75KHz, GFSK-5KHz, GMSK, MSK, CPFSK-75KHz, CPFSK-5KHz, APSK16-c34, APSK32-c34, QAM32, OQPSK, PI4QPSK, FM-NB, FM-WB, AM-DSB, AM-SSB, NOISE

RadioML 2016.10A
- 11 classes
 - BPSK, QPSK, 8PSK, PAM4, QAM16, QAM64, GFSK, CPFSK, FM, AM-DSB, AM-SSB
ASCC vs.
RadioML dataset

ASCC
- Training examples are 1024x2 matrices
- Python pkl files
- Various SNRs
- Various samples/symbol
- Channel…? Unknown
- ~30 GB of raw data

RadioML 2016.10A
- Training examples are 1024x2 matrices
- Python pkl files
- Various SNRs
- Passed through channel models
- ~600 MB of raw data
ASCC vs. RadioML
Conclusions
GTRI ASCC Team Approach

- ML Stack: Keras/TensorFlow/CUDA/GPU
- Prototyped on RadioML, real runs on ASCC
- Generally 90%/10% train/test split
- Several parallel efforts
 - New ideas for RF signals ML
 - Hand-tuned network design
 - Evolutionary algorithms for architecture search
GTRI ASCC Team Approach

- ML Stack: Keras/TensorFlow/CUDA/GPU
- Prototyped on RadioML, real runs on ASCC
- Generally 90%/10% train/test split
- Several parallel efforts
 - New ideas for RF signals ML
 - Hand-tuned network design
 - Evolutionary algorithms for architecture search
ML for Signals: New Ideas

- Convoluted Convolutional neural nets for complex-valued signals
 - Using real-valued packages (Tensorflow)
 - I will freely say convolution or correlation, they are equivalent when the weights are discovered through optimization
- New activation functions
 - CoReLU
- Complex max-pooling
- Learned linear transformations (LLT)
 - Update the weights in the linear part
 - Helps answer “which domain is best”
ML for Signals: New Ideas

- Convoluted Convolutional neural nets for complex-valued signals
 - Using real-valued packages (Tensorflow)
 - I will freely say convolution or correlation, they are equivalent when the weights are discovered through optimization
- New activation functions
 - CoReLU
- Complex max-pooling
- Learned linear transformations (LLT)
 - Update the weights in the linear part
 - Helps answer "which domain is best"
CNN Performance Review

- Uses correlations and weak nonlinearity to find a snippet / feature
- Then looks for patterns of features
- Then patterns of those patterns
- And so on until you get a high-level list of features for an input
- Then map features to labels

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng.
Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks
$f(Z_1) = \text{BPSK}$

$f(Z_2) = \text{QPSK}$

$f(Z_3) = \text{QAM-16}$

$f(Z_4) = \text{QPSK}$

\[\vdots \]

$f(Z_N) = \text{MOD}_N$

$f(Z)$ is differentiable

$f(Z)$ has free parameters (often millions)

Learning is updating the free parameters by optimizer

Objective is to minimize an error measure

CNN Training Review
Correlation: Real Valued Example

- Correlator (matched filter)
- Magnitude
- If larger than a threshold, detected that feature
Correlation: Real Valued Example
Correlation: Real Valued Example

- Features are detected by the weak nonlinearity (absolute value and thresholding)
- What is the natural extension to complex I/Q data?
Complex Valued Correlation

- A sequence of complex numbers, Z_n
- A set of filter taps, h_m

\[
Z_n = I_n + jQ_n = \begin{bmatrix} I_1 & Q_1 \\ I_2 & Q_2 \\ I_3 & Q_3 \\ \vdots & \vdots \\ I_N & Q_N \end{bmatrix}, \quad I_n, Q_n \in \mathbb{R}.
\]

\[
h_m = h'_m + jh''_m = \begin{bmatrix} h'_1 & h''_1 \\ h'_2 & h''_2 \\ h'_3 & h''_3 \\ \vdots & \vdots \\ h'_M & h''_M \end{bmatrix}, \quad h', h'' \in \mathbb{R}.
\]
Complex-Valued Correlation

- Naïve real-valued correlation gives a three column result
- The parts look familiar though!
Complex-Valued Correlation in Real Math

\[
X_{\text{naive}} = \begin{bmatrix}
I_1 & Q_1 \\
I_2 & Q_2 \\
I_3 & Q_3 \\
\vdots & \vdots \\
I_N & Q_N \\
\end{bmatrix} * \begin{bmatrix}
\begin{array}{ccc}
h'_1 & h''_1 \\
h'_2 & h''_2 \\
h'_3 & h''_3 \\
\vdots & \vdots \\
h'_M & h''_M \\
\end{array}
\end{bmatrix}
\]

\[
X = (I + jQ) \ast (h' + jh'') = (I \ast h' - Q \ast h'') + j(I \ast h'' + Q \ast h').
\]

\[
X = \begin{bmatrix}
I \ast h' - Q \ast h'' \\
I \ast h'' + Q \ast h'
\end{bmatrix}
\]

\[
X = X_{\text{naive}} \begin{bmatrix}
1 & 0 \\
0 & 1 \\
-1 & 0
\end{bmatrix}
\]
Complex-Valued Correlation

• Note that even if feature phase is off, there is a large (in complex magnitude) peak!
• How to generalize the non-linearity from the real case?
New Activation Function: CoReLU

- Keep the phase
- ReLU on the magnitude
- Recombine

\[\text{CoReLU}(Z, b) = \text{ReLU}(|Z| + b)e^{j\angle Z} \]
New Activation Function: CoReLU

- Throws away small correlations, just like in the real-valued case
- This is a I/Q space detection that keeps the phase information
- Maybe that is important further down the line to detect relationships between snippets
ML for Signals: New Ideas

- Convoluted Convolutional neural nets for complex-valued signals
 - Using real-valued packages (Tensorflow)
 - I will freely say convolution or correlation, they are equivalent when the weights are discovered through optimization
- New activation functions
 - CoReLU
- Complex max-pooling
- Learned linear transformations (LLT)
 - Update the weights in the linear part
 - Helps answer “which domain is best”
Learned Linear Transforms

- DFT is a linear transformation
 - Time to frequency
 - N samples in
 - N samples out
- What is the best basis?
 - Time?
 - Frequency?
 - Some wavelets?
- Space of transforms is infinite!
- Learn this transform from the data!

\[W = \frac{1}{\sqrt{N}} \]

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & \omega & \omega^2 & \omega^3 & \ldots & \omega^{N-1} \\
1 & \omega^2 & \omega^4 & \omega^6 & \ldots & \omega^{2(N-1)} \\
1 & \omega^3 & \omega^6 & \omega^9 & \ldots & \omega^{3(N-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \ldots & \omega^{(N-1)(N-1)}
\end{bmatrix}
\]

\[\omega = e^{-j2\pi/N} \]

\[\tilde{Z} = WZ \]
from keras.engine.topology import Layer
...

class LLT(Layer):
 ...
 def build(self, input_shape):
 self.W = self.add_weight(name='W',
 shape=...,
 initializer=..., trainable=True)
 ...
 def call(self, x):
 return K.dot(x, self.W)
 ...

(some Reshape layers to make it all work)
Learned Linear Transforms

• Different initial conditions before optimizer runs
 • Glorot
 • Uniform
 • Identity matrix – start with time representation
 • DFT matrix – start with frequency representation
GTRI ASCC Result

• We put all that together and...
• Congrats to 1) Platypus Aerospace, 2) TeamAu, and 3) Deep Dreamers!
• GTRI (YellowJackets) placed 15 out of 49 scored entries
 • Most of our submissions were using the hand-tuned networks
 • Hand-tuned team was able to iterate faster due to better hardware
ASCC Final Notes

• Scoring metric was strange
 • Log-loss is great for optimizing/learning, not as telling for performance
 • Diagonally-ness of the confusion matrix might be better?
 • Top five accuracy?

• Human speech has lots of silence
 • This means that things like human speech over FM can look like just an unmodulated carrier a lot of the time, especially when there is only 1024 samples collected at megasamples per second
Final Thoughts

• ML for signals / radio is really fun
• Go download TensorFlow and Keras
 • You do not have to have a PhD in ML to use these tools
 • If you can GNURadio, you can ML
• Lots of low-hanging fruit still in this area
 • Just by applying what has worked in computer vision, you can probably crank out state-of-the-art results (there is not much published here)
Questions?