A decade of gr-specest

Free Spectral Estimation!

September 2019, GNU Radio Conference Martin Braun

What is Estimation (Theory)?

- An unambiguous, mathematically derived algorithm for determining a desired value from a set of noisy inputs
- No guesswork involved! "Guesstimates" are something else, not grounded in scientific rigour.
- Example 1: Determine constant the voltage on a line, but the measurement equipment is injecting white Gaussian noise, with an unknown, but constant and bounded variance
 - => [do some math after establishing assumptions]
 - => Best solution: Measure N times, average the results: $\hat{u} = rac{1}{N} \sum_{i=0}^{N-1} u_i$

What is Estimation (Theory)?

- An unambiguous, mathematically derived algorithm for determining a desired value from a set of noisy inputs
- No guesswork involved! "Guesstimates" are something else, not grounded in scientific rigour.
- Example 2: How long will it take to complete a project, if there is exactly three tasks, and they can only be completed in order. Task 1 takes 3-6 days, Task 2 takes 2-5 days, Task 3 takes 1-3 days.
 - => [Apply some common model]
 - => 90% confidence of completion within 12.4 days

What is Estimation (Theory)?

- An unambiguous, mathematically derived algorithm for determining a desired value from a set of noisy inputs
- No guesswork involved! "Guesstimates" are something else, not grounded in scientific rigour.

=> So, spectral estimation is the mathematical derivation of an estimate for "the spectrum" based on noisy measurements.

What is a spectrum?

- Come to think of it, what is a spectrum?
 What's the most spectrum-esque picture here?
 - => Understanding spectral analysis is useless without first defining "spectrum"

Non-Parametric Spectral Estimation

Estimating the Power Spectrum Density

 PSD as expected value of the truncated Fourier transform:

$$S_{xx}(\omega) = \lim_{T o \infty} \mathbf{E} \left[\left| \hat{x}(\omega)
ight|^2
ight].$$

Where

$$\hat{x}(\omega) = rac{1}{\sqrt{T}} \int_0^T x(t) e^{-i\omega t} \ dt$$

"Average time-limited Fourier transform"

We know how to do time-limited Fourier transforms of discrete-time signals really fast, don't we!

 PSD as Fourier transform of the autocorrelation function of the underlying stochastic process:

$$S_{xx}(\omega) = \int_{-\infty}^{\infty} R_{xx}(au) e^{-i\omega au} d au$$

where:

$$R_{xx}(\tau) = \mathbf{E}[X(t)^*X(t+\tau)]$$

This path leads to correlogram-based methods (not further discussed here)

Welch's Method

- Split signal into L segments of length M samples, overlapping by D samples
- Multiply every segment by a window function ("modify the segment")
- Calculate the FFT of every modified segment
- Calculate the magnitude-squared of every FFT output ("modified periodogram")
- Calculate bin-wise average of periodograms
- For continuous updates, drop last periodogram and acquire new periodogram from new samples

welch_spectrum.grc

What is the "QT Frequency Sink"?

- Less sophisticated little brother of the Welch estimator:
- No overlap
- Samples get dropped to accommodate QT Update Interval
- Averaging is done using single-pole IIR
- No power level normalization
- "Dropped some rigour for performance & convenience"

welch_qt.grc

Practical Considerations

- Window Function: Affects sidelobes and scalloping loss
- FFT length: Affects FFT gain
- => Power peak values are a function of both frequency, and the Welch configuration parameters!

welch_sinusoids.grc

Parametric Spectral Estimation

Sinusoidal Detection

What if I'm only finding sinusoids in noise?
 Signal model:

$$y(k) = \sum_{i=0}^n lpha_i e^{j(\omega_i k + \phi_i)} + z(k)$$

- Then all I'm looking for are parameters of my model
 - "What are the omegas?"
- Solution: Subspace-based, algebraic methods
- MUSIC, ESPRIT are the most commonly cited variations of these methods
- These algorithms can be used as efficient direction-finding algorithms

esprit_freqest.grc and esprit_pspectrum.grc

ESPRIT and MUSIC

- We'll skip the math to avoid incurring the wrath of the MC
- Pseudospectrum vs. Frequency Estimation:
 - We either immediately identify the parameters, and that's it
 - Or we derive a spectral plot out of our method
- The model needs to be well defined: We need to know the number of sinusoids for a good estimate
- The input for MUSIC and ESPRIT is an estimate of the covariance matrix, which improves with more averaging
- The dimensionality of the covariance matrix is an algorithm parameter, it needs to be greater than the number of sinusoids

AR/MA Signal Models

- What if my signal is modeled by an LTI system? Maybe it's a filter?
- How about I directly try and estimate the filter, instead of the entire signal?

- Common algorithm: Burg's Method
 - Other algorithms: Yule-Walker Method, Fast (modified) Covariance Method
 - Other underlying principles: Wiener-Hopf Equation, Levinson-Durbin Recursion PARCOR-Coefficients

burg.grc

gr-specest's nice little history

gr-specest's origins

- New challenge: Germany switched to a Bachelor's / Master's system
- In our case, students need to do Bachelor's-Level graduation projects
- What can they do?
 - Need solid practical experience (might go look for a job)
 - Need solid theoretical foundations (might get a Master's or Dr-.lng.)
 - Should be fun
- Solution: Throw the students at GNU Radio, but let them figure out something with a good theoretical background
 - Easy way to get people in the community
 - Students had relevant open source code out there for employers who care

gr-specest on the webs

We quickly disseminated and praised gr-specest everywhere, put it on CGRAN

Students could point show

their moms they were famous on the internet

Subject: [Discuss-gnuradio] Spectral Estimation and Compressive Sensing

I am happy to say that we from the INT have managed to merge some of our research with GNU Radio development and have released some code on

Date: Thu, 5 Mar 2009 11:47:17 +0100

CGRAN. There are two new projects: 1) Spectral Estimation Toolbox

From: Martin Braun

User-agent: Mutt/1.5.17 (2007-11-01)

This project aims to enhance GNU Radio with 'proper' spectral estimation routines; so far it only includes Welch's method as a hierarchical

block.

List of all gr-specest algorithms

- Welch's Method (MA and Single-Pole)
- MUSIC (Root-MUSIC, MUSIC Pseudospectrum)
- ESPRIT (Frequency Estimator, Pseudospectrum)
- Thomson's Multitaper Method (MTM)
- Burg's Method
- Fast (modified) covariance method
- FFT Accumulation Method (Cyclostationary Processing, GUI version not yet ported to 3.8)

Utilities: Vector Moving Average, Vector Reciprocal (1/x),
 Stream to Vector Overlap, Pad Vector

What else came out of gr-specest?

- A group of students benchmarked various math libraries (in 2010) and found that Fortran90 beat the competition -> So of course we now have Fortran in GNU Radio
- It started making us frustrated with creating OOTs. A few OOTs later, modtool was born.
- We learned there were more ways to capitalize on students' work

```
SUBROUTINE ZESPRIT(SAMPLES, LSAMPLES, N, M, OMEGAS)
  INTEGER :: LSAMPLES, N, M, I
 COMPLEX*16 :: SAMPLES(LSAMPLES), R(M,M), EV(N)
 DOUBLE PRECISION :: OMEGAS(N)
 CALL ZCORREST(SAMPLES, LSAMPLES, M, R)
 CALL ZESPRIT COMMON(R, N, M, EV)
 DOI = 1, N
   OMEGAS(I) = ATAN2(AIMAG(EV(I)), REAL(EV(I)))
 END DO
END SUBROUTINE ZESPRIT
NORMAL > +0 ~0 -0 / master > lib/zesprit algo.f90
```