“While the eyes of the world now look into space, to the moon and to the planets beyond...”
John F. Kennedy, April 11, 1970
Mike Piscopo

- Delta Risk LLC – Director Cybersecurity Professional Services
- Worked with GNU Radio Since about 2013
- Authored a Number of Add-on Modules (gr-correctiq, lfast, grnet, clenabled,...)

- BS Aerospace Engineering – Virginia Tech
- Aerospace Contractor – Real-time distributed centrifuge team
- Developer – embedded C++ and later application architect
- Network Field Engineer and IT architect

- Amateur Radio
- Licensed Remote Pilot (Drones)
What We’ll Cover

- Enhancing the Basics Between Good Antennas and Flowgraph Logic
- Polar Orbiters - Multiple Remote Receivers and Enhanced Doppler Correction
- New Open Source Tools for Pointing Antennas at Celestial Targets (Moon, Mars, and RA)
- Work from the Berkeley/SETI/GNU Radio Hackathon at the Allen Telescope Array
Polar Orbiting Scenario

- [Re]Started with ISS SSTV Event
- Passes occurred at different relative angles
- Sometimes the house is in the way
- Would be nice to go about my day and analyze the data when I had time
- Record IQ streams for troubleshooting, but only when there was a signal

- Problem 1: Intelligent recording
- Problem 2: Split signal coverage
Smarter Storage – New gr-filerepeater Blocks

Smarter Storage

Time-of-Day / Cycle Control

More Complex Decision Logic

Debugging:
When did state messages occur?
Bringing Doppler and Az/El into GNURadio

Refactored GPredict Doppler

Doppler Blocks

NOTES
✓ All blocks output state: 1/0 pair
✓ Gpredict sends AOS/LOS at horizon
✓ NOTE: If Gpredict connects in the middle of a pass, no AOS is sent
✓ File sink does have a flag to set start recording state on/off

Setting a Variable From a Message

Az/El Blocks

Supports min>max scenarios

© 2019 - DELTA RISK LLC
GPredictDoppler – Complex Recording Rule

- Gpredict-Doppler Velocity-based Doppler
- Gr-mesa - Auto-Doppler Correct Block
Split Coverage Problem: Auto-Select The Best Signal

- Extensible: source selector looks for a “decisionvalue” dictionary entry in the message
- New IO Selector rewritten in C++ - Messages or variable updates to control ports
- Source Selector output is UI friendly (message pair “inputport” index)

Relevant gr-mesa Blocks:
- Source Selector
- Refactored IO Selector
- Max Power Block
Complete flowgraphs are in gr-mesa/examples noaa*.grc
Hurricane Dorian 09/06/2019 – Low-Res APT

“Gray Thing on The Deck”

“House”

“Black Can in Front”
Signals From Celestial Targets, Moons, or Their Orbiters

"NASA: Return To the moon by 2024!"

- Really far away
- Need to know where to look
- They’re constantly moving
- Hand-tracking is tough (and distracting)
- GPredict only supports satellites with TLE’s (Earth-based model), not celestial bodies

- Problem 1: Pointing at the Moon, Mars,...
- Problem 2: Pointing based on RA / Dec – Radio Astronomy
Pointing at Solar System Targets - SkyTrack

- Solution: **skytrack.py** for Solar System Targets
- Python-based - uses the new skyfield module
- Can interface via hamlib/rotctl to rotators
- “Looks” to GNU Radio and rotctld just like GPredict
- GitHub: https://github.com/ghostop14/skytrack.git

Quick Command:
```bash
../skytrack.py --body=moon --lat=<lat> --long=<long> --rotor=127.0.0.1:4533 --azoffset=-12.0 --delay=120
```

Offset-tuned LRO telemetry integration with too small an antenna (0.9m)
Pointing at Celestial Targets – By RA / Dec

- RA / Dec Celestial Coordinates
- Targets so far they’re relatively fixed
- Trivia: RA=0: Point where sun appears to cross the celestial equator from S->N “Vernal Equinox”
- Earth Moves and Rotates Continuously
- Az / El is Location and Date/Time Dependent

- Solution: `radec1.py` (part of Skytrack repo)
 - Takes RA, Dec, Lat and Long as Inputs
 - Outputs local Az / El Based on [Current] Time for rotator control (hamlib/rotctld/GNU Radio compatible)
Allen Telescope Array - The Ultimate Remote Feed!

- Raw SDR Potential!
 - 42 6m Dishes, 2 feeds/dish (H/V)
 - Frequencies 500 MHz – 10 GHz (log periodic feed)
 - Cryo-cooled feed to reduce system noise
 - 104.8576 MCS/s (8-bit signed) per polarization
 - Beamformer - 1.677 / 3.354 Gbps, Jumbo UDP Frames
 - RFCBs – Downconverted constant IF (629.1456 MHz center)

- Several Groups focusing on:
 - Metadata – SigMF
 - **Array beamformer stream ingestion into GNURadio and Array Control**
 - Tapping new USRP hardware directly into antenna feeds
 - Detecting Voyager-2
 - Working on GNU Radio 3.8 and some OOT ports
Allen Telescope Array Beamformer Feed

- **New!** GRNet PCAP UDP Source for Playback (tcpdump –i eth0 –w pcap_src.pcap “udp”)
- **New!** Gr-correctiq has a SwapIQ block (more intuitive than multiply-conjugate for beginners)
- **New!** GR-ATA (Work in Progress) - ATA stream block based on GRNet UDP source, Examples
- **New!** GRNet csdr-style Type Converters (SC8 and SC16 <-> FC32, direct SC8 decimator)
- Completely refactored the GRNet UDP source block for speed and flexibility
- Tested at full speed (104.8576 MCS/s) with very few missed packets
- UDP Source Sink Optional Headers (64-bit sequence, ATA, CHDR)
- Defined Packet Size
- Optional Notifications on Missed Frames

From a PCAP of Beamformer Captured While On-site

ATA Live (grnet UDP wrapper)

Inverted Spectrum

SwapiQ

Interleaved Signed8 To Complex

SwapiQ in Gr-CorrectIQ
* Flowgraph is in gr-ata/examples
Q & A

- Download code at https://github.com/ghostop14 or via pybombs
- GR 3.8 conversions already complete (master and maint-3.7 branches)
- GNU Radio Mailing List
- GNU Radio Slack Channel