GPUDirect + SDR: How to Move One Billion Samples per Second over PCIe

John Orlando - Epiq Solutions (on behalf of our Sidekiq Development Team)
Company Background

● Celebrating 10 years of delivering:
 ○ The smallest commercially available SDR modules in the world
 ○ Delivering complete RF sensing solutions to a broad range of commercial, defense, and security markets

● Team of ~40 (and growing), predominantly engineers
 ○ RF/hardware, software/DSP, FPGA, mechanical, test/production, sales
 ○ HQ in Schaumburg, IL (engineering + production/test)
 ○ “Epiq East” (EE) in Alexandria, VA est 2016 (sales/BD)
 ○ WE ARE HIRING! STOP BY OUR BOOTH

GRCon 2019
Problem Statement

RF Front End + Data Converters

Compute Element

HOW?

WHICH?
How Much Throughput is Needed These Days?

<table>
<thead>
<tr>
<th>Wireless Standard</th>
<th>Max Bandwidth per Antenna</th>
<th>Typical Quadrature Sample Rate</th>
<th># of Antennas</th>
<th>Baseband I/O Bandwidth Required (sans overhead)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM / 2G</td>
<td>200 KHz</td>
<td>541.667 Ksps</td>
<td>1</td>
<td>2.1 MBps</td>
</tr>
<tr>
<td>UMTS / 3G</td>
<td>5 MHz</td>
<td>7.68 Msps</td>
<td>1</td>
<td>30.72 MBps</td>
</tr>
<tr>
<td>LTE / 4G</td>
<td>20 MHz</td>
<td>30.72 Msps</td>
<td>1 to 4</td>
<td>122.88 MBps to 491.5 MBps</td>
</tr>
<tr>
<td>802.11n</td>
<td>40 MHz</td>
<td>40 Msps</td>
<td>1 to 4</td>
<td>160 MBps to 640 MBps</td>
</tr>
<tr>
<td>802.11ac</td>
<td>160 MHz</td>
<td>160 Msps</td>
<td>1 to 4</td>
<td>640 MBps to 2560 MBps</td>
</tr>
<tr>
<td>5G-NR</td>
<td>400 MHz</td>
<td>491.52 Msps</td>
<td>1 to 4+</td>
<td>1964 MBps to 7856 MBps+</td>
</tr>
</tbody>
</table>

*Assumes 16-bits ‘I’ and 16-bits ‘Q’ for each sample

So...Many...Samples...
Options for Compute Elements

CPU
GPU
FPGA

(also DSPs, but much less common in SDR these days)
Let’s Be Pragmatic

Note: Completely made up numbers, though this is what it feels like after 20+ years in the industry.
Let’s Be Pragmatic

Note: Completely made up numbers, though this is what it feels like after 20+ years in the industry.
Options for Compute Elements

CPU GPU FPGA

Eureka! Write software for a GPU to do SDR!

GRCon 2019
Previous Published Work

GR-GPU work from 2011
(work and image courtesy of Plishker, Zaki, Bhattacharyya, Clancy, and Kuykendall)
Using GPUs with SDR: Classic Architecture
GRCon 2019

Can We Do Better?
Can We Increase Throughput?
If So, By How Much?
GPUDirect RDMA

- **What is it?**
 - Developed by Nvidia, first introduced in 2013
 - Software driver to allow PCIe devices to target DMA transactions for GPU memory instead of CPU memory
 - CUDA-based computation in GPU for high-end parallel signal processing
 - CPU sets up transactions and then gets out of the way
 - In theory:
 - More efficient
 - Higher throughput
 - Fewer CPU cycles
 - Lower system power consumption
 - Winning!

(Image courtesy of Nvidia)

GRCon 2019
From This...

1. Analog
2. JESD204b/c 10s of Gbits/sec
3. PCIe 10s of Gbits/sec
4. DMA
5. RAM
6. PCIe 10s of Gbits/sec

RF Front End + Data Converters

FPGA

CPU

GPU

GRCon 2019
...To This

RF Front End + Data Converters

JESD204b/c
10s of Gbits/sec

FPGA

PCIe
10s of Gbits/sec

CPU

GPU

RAM

Analog

1

2

3

GRCon 2019
What You Need - PCIe-based Radio Module

- For installation in rack mounted servers or standard motherboards
- PCIe full height, half length carrier
- Xilinx Kintex Ultrascale FPGA
- Gen3 PCIe x8

GRCon 2019

Sidekiq X4

- VITA 57.1 FMC Card
- 4x4 MIMO (dual ADRV9009 RFICs from ADI)
- Up to 800 MHz IBW
- Integrated Rx pre-select filters
- Supported by our standard libsidekiq API

- For installation in 3U VPX systems
- Xilinx Kintex Ultrascale FPGA + Zynq Ultrascale+ SoC
- Gen3 PCIe x8
<table>
<thead>
<tr>
<th></th>
<th>Sidekiq MiniPCIe</th>
<th>Sidekiq M2</th>
<th>Sidekiq Stretch (M2 2280)</th>
<th>Sidekiq X2</th>
<th>Sidekiq X4</th>
<th>Sidekiq VPX4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max # RF Rx / Tx</td>
<td>2 / 1</td>
<td>2 / 2</td>
<td>1 / 1</td>
<td>3 / 2</td>
<td>4 / 4</td>
<td>4 / 4</td>
</tr>
<tr>
<td>RF Tuning Range</td>
<td>70 MHz - 6 GHz</td>
<td>70 MHz - 6 GHz</td>
<td>70 MHz - 6 GHz</td>
<td>1 MHz - 6 GHz</td>
<td>1 MHz - 6 GHz</td>
<td>1 MHz - 6 GHz</td>
</tr>
<tr>
<td>Integrated Rx Pre-Select Filters</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Max total IBW</td>
<td>50 MHz</td>
<td>50 MHz</td>
<td>50 MHz</td>
<td>200 MHz</td>
<td>800 MHz</td>
<td>800 MHz</td>
</tr>
<tr>
<td>ADC/DAC sample width</td>
<td>12/12-bits</td>
<td>12/12-bits</td>
<td>12/12-bits</td>
<td>16/14-bits</td>
<td>16/14-bits</td>
<td>16/14-bits</td>
</tr>
<tr>
<td>FPGA on-board</td>
<td>Xilinx Spartan 6 LX45T</td>
<td>Xilinx Artix 7 XC7A50T</td>
<td>Xilinx Artix 7 XC7A50T</td>
<td>None (FPGA on host)</td>
<td>None (FPGA on host)</td>
<td>Xilinx Kintex Ultrascale KU115</td>
</tr>
<tr>
<td>Linux computer on board</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Quad-core ARM A53</td>
</tr>
<tr>
<td>Host Interface</td>
<td>Gen1 PCIe x1 + USB2</td>
<td>Gen2 PCIe x1 + USB2</td>
<td>Gen2 PCIe x1</td>
<td>FMC HPC*</td>
<td>FMC HPC*</td>
<td>Gen3 PCIe x4 + Ethernet</td>
</tr>
<tr>
<td>Typical power consumption</td>
<td>2.2-2.5 W</td>
<td>2.5-3.5 W</td>
<td>1-2 W</td>
<td>4-10 W</td>
<td>6-18 W</td>
<td>25-50W</td>
</tr>
<tr>
<td>Size</td>
<td>30 x 51 mm</td>
<td>30 x 42 mm</td>
<td>30 x 51 mm</td>
<td>69 x 77 mm</td>
<td>69 x 77 mm</td>
<td>100 x 160 mm</td>
</tr>
</tbody>
</table>

GRCon 2019

*FPGA card would typically provide PCIe interface to host
What You Need - CPU + GPU Compute Element

- Motherboard with x86 CPU + Nvidia GPU card
- GPUDirect requires the GPU card and radio device be on same PCIe root complex

Quadro P2000

- Nvidia Xavier platform
- Integrated octa-core ARM + GPU on embedded module

GRCon 2019 (Linux Only)
How Does GPUDirect Work, Roughly:

- **Step 1**: CPU pins physical memory buffers in GPU
- **Step 2**: CPU informs FPGA of physical memory buffers via DMA descriptor list
- **Step 3**: CPU gets the hell out of the way
- **Step 4**: FPGA can perform DMA of I/Q directly into GPU pinned memory
- **Step 5**: GPU crunches I/Q like a champ
- **Step 6**: Goto Step 4
Does it Work? Let’s Find Out...

- Updated the PCIe DMA driver used with our Sidekiq SDR cards to support GPUDirect
- Built two hardware test platforms for experimentation
 - **Platform 1**: Intel Core i7 CPU in Gigabyte motherboard with Nvidia P2000 GPU card
 - **Platform 2**: Nvidia Xavier platform with octa-ARM + GPU on module
- Both platforms run Linux (GPUDirect isn't supported in Windows)
Test Scenario

● Test 1 (aka “the old way to use a GPU”)
 ○ FPGA -> CPU -> RAM -> CPU -> GPU

● Test 2 (aka “the GPUDirect way”)
 ○ FPGA -> GPU

● Perform simple computational kernel in GPU
 ○ FPGA generated known payload in place of I/Q data
 ○ Calculated average of transported data and returned it to CPU for validation

● Measure transport throughput into GPU
Test Results...Drumroll Please...

Platform 1

- Test 1 (the old way): 1718 MB/sec
- Test 2 (the GPUDirect way): 1733 MB/sec
- 1% performance improvement!
- Yay? WTH
- Headscratching ensues...
- Check the hardware

GRCon 2019
Test Results...Drumroll Please...

Platform 1

- FPGA loaded with a PCIe Gen2 x4 DMA engine
- Let’s Math
 - PCIe Gen2 = 5 Gbits/sec per lane
 - x4 lanes = 20 Gbits/sec
 - Reduce for 8b/10b coding = 16 Gbits/sec
 - Real-world PCIe bus utilization of ~85% = 13.6 Gbits/sec
 - In bytes: 1700 MB/sec
 - In other words:
 - The PCIe bus is the limiting factor here
 - The FPGA->CPU->RAM->CPU->GPU path is just as fast as the FPGA->GPU path
- So what now?

GRCon 2019
Test Results...Drumroll Please...

Platform 1, Take 2

- FPGA now loaded with a PCIe Gen3 x8 DMA engine
- Motherboard supports up to Gen3 x16
 - PCIe Gen3 = 8 Gbits/sec per lane
 - x8 lanes = 64 Gbits/sec
 - Uses 128b/130b coding = 63 Gbits/sec
 - Should be PLENTY of throughput
- Re-test and hope sanity is restored
Test Results...Drumroll Please...

Platform 1, Take 2

- Test 1 (the old way): 3219 MB/sec
- Test 2 (the GPUDirect way): 4677 MB/sec
- 45% throughput improvement!
- Sanity is restored
Test Results...Drumroll Please...

Platform 2

- Test 1 (the old way): 2079 MB/sec
- Test 2 (the GPUDirect way): 3035 MB/sec

- 46% throughput improvement!
- Nearly identical % improvement compared to x86
Yes Virginia...

- ...you can move > 1 billion samples/sec over PCIe into a GPU using GPUDirect RDMA
 - 4677 MB/sec equates to ~1.17 Gsamples/sec for 16-bit ‘I’ and 16-bit ‘Q’
 - Enough to digitize 1 GHz of RF spectrum
- ...SDRs based on PCIe provide the most efficient, scalable, low-power transport out there today
- ...GPUDirect + SDR is a natural fit...and using a PCIe-based SDR is a near optimal solution
Does it Matter?

- If you care about single channel bandwidths in the range of 1 GHz...
- If you care about MIMO (2x2, 4x4, etc) where channel bandwidths are hundreds of MHz...
- If you want to keep your CPU cycles for something else...
- If you want to implement signal processing applications in GPUs...

- ...then YES...GPUDirect matters...BIG TIME
- (It may be the only way to achieve the desired results)
Expanded Processing Options

GPUs can be chained together via NVLink interconnect
GPUDirect Support in Libsidekiq

● Initial support coming in 4Q2019
● Sidekiq X4 capability
 ○ 4-channel Rx @ 245 Msamples/sec (phase coherent)
 ○ 2-channel Rx @ 491 Msamples/sec (independently tunable)
 ○ Support for PCIe carrier (server deployment)
 ○ Support for 3U VPX carrier (ruggedized deployment)
● Sidekiq Stretch capability
 ○ 1-channel Rx a 61.44 Msamples/sec
Areas for Exploration

● Improved DMA descriptor management
 ○ CPU is still involved...for now
● More optimal data transport size
 ○ 4K DMA blocks currently, but GPUs like BIG chunks of data
● Handling of meta-data in I/Q stream
 ○ GPU checks timestamps in GPU?
 ○ GPU plucks out gain value for normalization?
 ○ Raw I/Q sans meta-data?
● Integration with GPU frameworks
 ○ Photon (http://photon.mitre.org), others
● OpenCL support?
 ○ DirectGMA / bus-addressable memory
Quick Shout Out

- ...to MITRE Corp for helping fund a portion of this GPUDirect development work
- ...to our Sidekiq team doing the heavy lifting
- ...to our customers that continue to use and deploy Sidekiq in all kinds of interesting applications all over the world
If you are at the top of your game...

- ...and you like building hardware or software
- ...and you like working on hard problems
- ...and you like being surrounded by a team of capable makers that know how to get things done

WE ARE HIRING
COME TALK TO US AT OUR BOOTH

(or send an email to jobs@epiqsolutions.com)

GRCon 2019
THANK YOU GRCON 2019!