Prototyping LTE-WiFi Interworking on a Single SDR Platform

Walter Nitzold, Clemens Felber, Vincent Kotzsch
National Instruments, Dresden, Germany
Future Wireless Communication System (aka 5G and beyond)

- Demand for higher throughput and/or lower latency
- Flexibility within radio access technology (RAT) such as LTE and WiFi
- Transparent End-to-End view involves interworking/coordination between different RATs

→ How to study/research these interworking technologies?
Open Source Protocol Stacks (Layer 2 and above)

IP Networks
802.11
LTE UE
LTE eNB
LTE EPC
5G NR UE
5G NR gNB

Linux 802mac
NS-3
OpenLTe
Network Simulator NS-3

- Open source (GNU GPLv2) discrete-event network simulator in C++
- Allows for simulating IP networks including routing algorithms
- Provides various wireless/IP simulation models including LTE, Wi-Fi, ...

Only simulation → Integrate SDRs, but how?
SDR Integration

OSI Model
- **Layer 1** (Physical Layer)
- **Layer 2** (Data Link Layer)
- **Layer 3** (Network Layer)
- **Layer 4** (Transport Layer)

3GPP LTE/5G Protocol Stack

User Plane
- IP
- PDCP
- RLC
- MAC
- PHY
- RF + Antenna

Control Plane
- NAS
- RRC
- SRS
- SRS
- GCC
- NS-3

- **L1-L2 API**

- Integrity, ciphering, duplicate detect, SN, reordering, dual connectivity
- Segmentation, reassembly, ARQ
- Channel mux, adaptive resource scheduling (incl Beamforming), HARQ, access procedure, carrier aggregation
- Coding, modulation, resource mapping, MIMO
- Air transmission through EM waves

Air transmission through EM waves

Channel mux, adaptive resource scheduling (incl Beamforming), HARQ, access procedure, carrier aggregation

Coding, modulation, resource mapping, MIMO

Integrity, ciphering, duplicate detect, SN, reordering, dual connectivity

Segmentation, reassembly, ARQ
MAC-PHY API Concept

Cellular
- LTE PHY/L1 < 6GHz
- RF HW
- 3rd party L3
- L2-L3 API

LabVIEW based MAC/L2
- 3rd party L2
- 3rd party protocol stack (e.g. ns-3)

L1-L2 API

WiFi
- 3rd party 802.11 protocol stack
- 802.11 MAC high functionality

RF HW
- 802.11 MAC low + PHY

L1-L2 API

Aligned on concepts, mechanisms, general structure, ...
Potential of a general L1-L2 API

- Offers the **same ease of use** and mechanisms for different physical layer implementations.
- Enables very **flexible configuration** and E2E user data transmission.
- Enables **faster adoption, extension, migration and integration** of physical layer prototyping systems towards protocol and network level research & applications.
- Increases the level of **system abstraction**, because of no need to understand all details of the underlying physical layer.
- Offers a high level of **re-use** and increases the **transparency** of a complex wireless system.
How does the L1-L2 API work?
L1-L2 API – General principles

Communication based on a common set of 3 message types

- **REQ** → (Service) Request
- **IND** → Indication (status, data, error, …)
- **CNF** → Confirm w/ option to be disabled

Example: TX REQ for data channel
- **CONTROL**
 - MCS, RB allocation, TB size, …
- **PAYLOAD**
 - Transport block bits/bytes
L1-L2 API in action - Message Sequence Chart
L1-L2 API – Interfaces and Modules

Interfaces and Modules

L1
- **Msg Gen**
- **Msg Handler**

L2
- **Msg Gen**
- **Msg Handler**

Transport medium btw. L1-L2
- **INDs**
- **CNFs**
- **REQs**

Implementation specific, e.g.
- P2P FIFOs
- H2T/T2H FIFOs
- Memory pointers
- C-API
- UDP via Ethernet

Implementation specific, e.g.:
- P2P FIFOs
- H2T/T2H FIFOs
- Memory pointers
- C-API
- UDP via Ethernet

Can be realized by standard platform components

Common message interface

Common platform components

To be provided by L1
- compliant with common API

To be provided by L2
- compliant with common API
LTE-WiFi Prototyping Setup with USRP-2974

- **USRP 2974**
 - Intel i7 CPU
 - PCIe Expansion
 - **NS-3 Simulation:**
 - Internal client / serv or TapBridge
 - Internet
 - LTE UE or eNB
 - WiFi AP or STA
 - **LV RT LTE API Handler**
 - **NV RT WiFi API Handler**
 - DMA
 - Pipes

- **USRP 2953**
 - Xilinx K7 FPGA
 - **LV FPGA 802.11 AFW**
 - DAC/ADC & RF

- **Interconnection**
 - **eNB** to **AP**
 - **AP** to **UE + STA**
 - **Intel i7 CPU**
 - **Xilinx K7 FPGA**
Measurement of End-to-End Throughput

- Close to capacity limit of LTE PHY layer
- Throughput Increase compared to pure software-based PHY
Conclusions and Outlook

- Generalized API specification to connect PHY and MAC of different RATs
- Interworking research is possible with ns-3 and attached real-time SDR
- Implementation is used in EU-funded research project ORCA (https://www.orca-project.eu)
- Enhanced ns-3 with L1-L2 API implementation available under https://github.com/ni/NI-ns3-ApplicationExample

Next steps:
- Maintain and further extend based on community/research needs
- Investigation and application to other higher layer stacks like Open Air Interface
- Investigation and application to other physical layers like 5G GFDM PIF TUD
Thanks!